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Critical dynamics and universality in kinetic Ising models 
without translational invariance 
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Department of Physics, University of Manitoba. Winnipeg, Manitoba. Canada R3T 2N2 and 
Winnipeg Institute far Theoretid Physics Wrnnipeg, Manitoba. Canada R3T ZN2 

. 
Received 5 January 1993 

Abstract. The critical dynamics of the Glauber-king model on non-translationally invariant 
lanices is studied. Both a quasi-periodic and a fractal geometry are considered. The distribution 
of inverse relaxation times p ( l / r )  is calculated using'a generating function method. The 
distribution consists of bands with an iniemal self-similar structure. In'the limit l / r  + 0, 
p ( l / r )  diverges with a universal exponent related to the dynamic aitid exponent L. The width 
of the lowest frequency band 4 determined by a non-universal bare time scale, which is related 
to the presence of metastable states. 

1. Introdqction 

Second-order phase transitions are characterized by long-range fluctuations and these 
fluctuations are responsible for critical singularities. The nature of the interactions between 
the long-range fluctuations depends only on a small number of general properties of the 
Hamiltonian. Therefore, different systems that share the same symmetry of the Hamiltonian 
in spin-space and in coordinate-space are expected to have thermodynamic quantities with 
similar singular behaviour [I]. This idea of 'universality' has also been extended to the 
description of time-dependent phenomena near the critical point [2]. The universality classes 
that describe the critical dynamics should be a subdivision of those describing the statics 
according to conservation laws that restrict the dynamics [3]. 

1t .k  important to note that the term 'universal' is applied only to some of the 
characteristics of a system. For example, we expect the relaxation towards equilibrium to be 
characterized by a time scale = A P ( T ) ,  where c (T)  is the static correlation lengh that 
diverges at the critical temperature, Tc. In this relation z is a universal'dynamic exponent, 
but A is a non-universal amplitude which depends on the fine details of the system. In 
general, the value of z can be obtained from the fixed point of a scale transformation on the 
system but it is usually very difficult to find the exact expression [4] for the amplitude A.  
Thus, in practice, a phenomenological description of the dynamics is often used, where A is 
assumed to he a smooth function of temperature and hence a constant at T,. The amplitude 
A is usually taken to be proportional to some 'bare time scale', 70. 

The assumption that 70 should be considered as a constant is often a reasonable 
one. However, there are models where this assumption is not valid. These models are 
characterized by the presence of metastable states in the dynamics which, although they have 
zero weight in the static partition~function, have very long relaxation times. Therefore, even 
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in a phenomenological theory, these metastable states may cause a strongly T-dependent 
or singular so. In models with metastable states one finds two distinct time scales: one 
is linked to the cooperative behaviour characterizing the critical point of the system and 
is universal while the other is a result of short-range details due to a particular transition 
mechanisdrate. 

A simple example of a model having metastable states is the Glauber-king chain with 
alternating bond stren,ds [5,6] where the relaxation is constrained to occur via single-spin 
flips 171. The metastable states are the configurations that consist of pairs of neighbouring 
spins coupled by the strong bond and pointing in the same direction. The flipping of a pair 
can be achieved via single-spin flips only through the intermediate state where these two 
spins are pointing in opposite directions. The time scale for this transition, as given by 
the corresponding Arrhenius law [8], diverges as the critical point Tc = 0 is approached. 
Therefore, the critical slowing down and divergence of ro occur simultaneously. However, 
these are two different mechanisms and should be separated. The short-range time scale 
has nothing to do with critical phenomena. Any small system with only a few spins will 
have these non-relaxing metastable states, and the apparent non-critical 'slowing down'. 
Only small wavenumber, k, components in a very large system will show universal critical 
relaxation. It is important to note that in many models the existence of the metastable states 
is a direct result of the single-spin-flip reshiction. In a previous communication [9] we have 
shown that the addition of  the multi-spin flips allows the metastable states to relax, and the 
divergent short-range time scale associated with the single-spin-flip dynamics disappears. 

The different roles the two time scales play are clearly evident on lattices which are 
translationally invariant. In this case the dynamics can be studied using Laplace and Fourier 
transform methods. For example, the dispersion relation r-'(k) for the Laplace component 
of the average magnetization'[6] of an Ising chain with a unit cell composed of three spins 
interacting with bonds of strength ( K A ,  KA- KB}, KA > KB is shown in figure l(u). The 
periodicity of the unit cell leads to three bands, separated by gaps. In the l i t  of low 
T the width of the bands is proportional to r;' = e-2(KA-KB). Each mode in the lowest 
band corresponds to a state which is metastable with respect to single-spin flips and has 
a relaxation time that diverges at T = 0. All of these states have the three spins located 
between the weakest bond K B  aligned in the same direction. However, this divergence 
has nothing to do with critical phenomena and is present in any chain with inhomogeneous 
couplings. The detailed structure of the dispersion relation of the lowest band is due to 
long-range fluctuations and is characterized by the universal exponent z,  117 - kz, where 
z = 2 .  

An alternative way to present this same information is to use the distribution of relaxation 
times, p ( l / r ) ,  which is shown in figure I@). The same band structure with widths 
proportional to r;' is evident. However, it is the detailed structure of p ( l / r )  in the 
lowest band that reveals the universal nature of the relaxation. As l / r  4 0, it scales as 
p(l/r) - (l/r)ds12-', where d, can be considered as the spectral dimension [lo, 111 of the 
distribution and is related to z as follows 

Here df is the dimension of the system. In translationally invariant models with d f  = 1, we 
have ds = d f  since z = 2 and p has an inverse square root divergence as the critical point 
is approached. 

The above models can also be analysed using exact real-space renormalization group 
techniques [6]. The approach does not rely upon translational invariance and the distribution 
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Flyre 1. (=)The dispersion relation for the inverse relaxation times of a translationally invariant 
Glauber-king chain. The unit cell has three bonds, KA, KA, KB. There are three bands whose 
width allow temperahlres is proportional to e-2iKB8-KAI. (b)  The corresponding distribution of 
inverse relaxation times. At the edges of the bands the distribution of relaxation times has an 
inverse square mot divergence. 

p ( l / r )  can be obtained directly. In this latter approach the short-range time scale appears 
as a transient of the flow in the parameter space from the initial state. It is the flow away 
from the unstable fixed point that leads to the universal value z = 2. 

The study of the critical properties using the distribution of relaxation times is necessary 
when the system lacks translational invariance. In the present paper we use a generating 
function method 1121 to extend our study of translationally invariant Ising systems with 
metastable states to systems that are not translationally invariant. Ising models on two 
different geometries are considered. One is the quasi-periodic king chain [13,14] and the 
other is the Ising spin system on a 3-simplex gasket 1151. 

A brief description of the technique used to study p ( l / r )  is given in section 2. In 
sections 3 and 4 the critical dynamics of the quasi-periodic Ising chain and the 3-simplex 
gasket are studied respectively. Our conclusions are summarized in section 5. 

2. The distribution of inverse relaxation times and the RG transformation 

The relaxational dynamics of the Ising model is usually described [7] by a master equation 
for the time-dependent spin probability distribution. This distribution can then be used 
to study the time evolution of various expectation values of the spins. On the chain the 
relaxation of the average magnetization is described by a set of linear equations. However, 
when the coordination number is greater than two, the equations become non-linear in the 
sense that the expectation values of products of three or more spins are involved. In this 
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case, we can either try to include these higher-order averages exactly or try to reduce them 
to linear terms using various approximation schemes. In the models that we consider in this 
paper, the equations are exactly linear or can be reduced to linear form by identifying the 
slowest modes. In the following we describe a formalism which can be used to obtain the 
distribution of modes from such a set of linear equations. 

In the particular models that we'are studying the variables are the Laplace component 
q(l/r)e-Ifr of the average local magnetization Qj(t). The equations have the general form 

B W Southem and Y Achiam 

where Aii = 0. The distribution of relaxation times, p ( l / ~ ) ,  can be obtained from the 
Green function 1121. G;j ,  as follows 

1 1  
= lim - Im - '(:) F+O+X N Gi; (3) 

where Gij are the solutions for the inhomogeneous equations, 

and E is a small imaginary part that has been added to I /r .  
The Green function may be obtained from the complex generating function [12]t 

F ( ( l / r ) ,  Ai j ,  Ei) = ~ Dq exp[iS")((l/r), Aij, Ei ,q i ) l  (5) s 
where 

and the superscript (0) is introduced for later convenience. From the logarithm of the 
generating function F one can obtain the individual Gjj by taking partiaI derivatives with 
respect to the A;). However, the distribution of relaxation times (3) is obtained directly as 
follows 

The complex generating function plays the same role for the dynamics as the partition 
function does for the statics. Therefore, the RG techniques that are used to study the static 
critical behaviour [I61 can also be applied to the study of p(l/z). The simplest kind 
of RG transformation corresponds to 'decimation' where some fraction of the degrees of 
freedom are integrated out and new effective interactions between the remaining degrees of 
freedom are determined. The generating function is then obtained by iterating this procedure 
until all degees of freedom have been eliminated or convergence is reached. Using (7) the 

t Note that the F i n  [I21 corresponds ta I n F  in the present article. 
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distribution of relaxation times can be calculated and plotted as a function of l/t. However, 
if we are only interested in the singularities of p ,  then the nature of these are easily obtained 
from the unstable fixed points or cycles of the RG transformation. It is important 116,171 to 
note that the decimation transformation does not always possess a f i e d  point even though 
it c m  be used to calculate p exactly. In the following we will allow for transformations 
where the new degrees t of freedom are not ,simply related to the old degrees~ of freedom by 
a relabelling. As will be shown explicitly in section 4, such a transformation is necessary 
to obtain a fixed point for the 3-simplex gasket. 

In general our RG transformations consist of three steps. The first step corresponds 
to multiplying F by the function JDq(*)  .~T(q,q(')) = 1. This leaves 3 invariant 
and introduces~new degrees of freedom q"'. In the case of decimation, this is simply 
a relabelling of some fraction of the original q's. However, this can also correspond to a 
decoration process where additional variables are introduced. The ratio between the number 
of,components N in the set (q} and the number N ( ' )  in the set @(')) is 

NfN(1) bdf (8) 

where b is the scaling factor and df is the dimension. 
interchanging the.order of integration and integrating over the original set q to obtain 

The second step consists  of 

F(( l / r ) ,  A i j ,  Ei)  = Dq . T(q ,q ( ' ) )  exp[iS"(l/s, Aij ,  Et,  4i)l 

The choice of T is made so that the integration over 

functional form as S(') and this last step defines the complex constant of integration C('). 

in (9) can be done exactly. The third 
step involves a renormalization of the parameters Aij  41)  and E:' so that S(') has the same 

The above transformation can be expressed in the form 

where 

is the integrated density of inverse relaxation times and g(') = Im(2/n)C"). A similar 
relation for p can be written using (7), and iterating (IO) m times leads to 

This equation is the basic algorithm for our study of p.  
In the models that are discussed in the next sections, the trajectory flow of the RG 

transformation is described by a set of dimensionless parameters I?(") = [rp)] where the 
initial values are denoted by I?(') = I?(')(l/t, A!:)- E?'). These parameters have the values 
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I'* at the unstable fixed point of the RG transformation and near I?* the trajectory Row is 
described by the linearized RG transformation with the leading eigenvalue h, 

Standard scaling arguments applied to (10) yield the following scaling form for the singular 
Part of P 

p( l / r )  = bz-drp(bz/r). (13) 

The fixed point of interest in our case is the one that controls the behaviour of p near 
l / r  = 0. In this case the scaling equation (13) has the solution [4] 

p ( l / t )  - (l/r)dJZ-'Q(ln l/r). (14) 

In general, the function Q ( x )  is a periodic function with a period %/ds In b and thus can 
have several non-vanishing Fourier~ components. In the case of translationally invariant 
lattices where the scaling factor b can be chosen arbitrarily, it can be argued [4] that Q is a 
constant. However, in the case of non-translationally invariant lattices, the scaling factor is 
not arbitrary and the argument fails. Several groups have used this form to analyse periodic 
amplitudes for various types of problems [18,19]. The above solution is only valid within 
the linear regime of the RG transformation. We shall see in the following sections that some 
important modifications are required when metastable states are present. The initial values 
of the parameters in S(O) are located in the parameter space far away from the unstable fixed 
point but they flow after the first few RG iterations to the linear regime. This initial flow is 
characterized by a scale factor, ha, which is very different from the h that characterizes the 
linear regime and is temperature dependent. This fact does not affect the critical exponent, 
ds, appearing in (14) but the amplitude of g( ln  I / T )  is proportional to i o .  Using the chain 
rule of differentiation, p can be written as 

where it is assumed that the last term in (11) does not contribute in the limit m + CO. In the 
linear regime of the RG transformation all the derivatives W(")/ar("-') are approximated 
by A. However, for the cases that we consider, the initial derivative aI'(')/X'(o) - ha 
can diverge at low temperatures. Since p - A.0 and the total number of metastable states 
is bounded, this means that the width of the lower band should go to zero as 1/ho and 
hence ho is a new bare time scale in the problem which arises due to the presence of these 
metastable states. 

To emphasize the effect of b. we rewrite equation (14) as 

The spectral dimension, the period of the 'regular' function Q and A ( T )  can all be extracted 
from the RG transformation. However, each of them describes different features. The 
spectral dimension, or rather the dynamic exponent (U), characterizes the effect of the 
long-range fluctuations and is universal. The period of Q depends on z and the scaling 
factor b and is hence 'less' universal. The pre-factor A ( T )  describes non-universal features 
of the particular model on this geometry. When metastable states are present, this factor is 
strongly temperature-dependent and can diverge as the critical point is approached. In the 
next sections we study the Ising model on two quite different geometries where all of these 
effects are present. 



Critical dynamics and universality in kinetic Ising models 2525 

3. The kinetic Ising model on a quasi-periodic chain 

The quasi-periodic chain is a geometry which is not translationally invariant, but simple 
enough to have coordination number 2. Quasi-periodic lattices are defined by the 
incommensurate length scales of theu elementary units, and their self-similarity under certain 
inflation and deflation rules [13,14]. One of the most common quasi-periodic chains that 
has  been studied is the Fibonacci tiling which is generated by the following inflation rule 
from two seeds L and S: each S is replaced by an L,  while each L is replaced by an LS. 
This substitution is iterated until the sequence has the desired length. For instance, a growth 
sequence over five steps, starting from L, would be 

L + LS -i LSL  -+ LSLLS  -+ LSLLSLSL.  (17) 

The linear quasi-periodic king model [13] is a chain of spins, [q = f l ]  which interact 
with their nearest neighbours on either side. The Hamiltonian (in units of l / k ~ T )  is 

~ ~~ 
, 

H = - K i q - 1 ~ ;  (18) 

where the bonds Ki have two values which are distributed in a quasi-periodic fashion along 
the chain. Denoting these two values as L and S, we assume that the K; are ordered along 
the chain according to the Fibonacci ordering (17). An index x~ = (01, p, y )  can be added 
to each spin site to describe the local environment of the spin: U' interacts via two L 
interactions, U @  interacts~ to the right by an S interaction, CJY interacts to the left via an S 
interaction. The relative fractions n, of the three kinds of sites is 

n,=2<-3 n g = 2 - <  n,=2-(  (19) 

where < = $(l +A) is the golden mean. A more detailed description of the model and a 
study of its equilibrium properties can be found in Achiam et a1 [13]. 

The dynamics of the model [I41 is described by the master equation 

where P ( { o } ,  t) is the time-dependent spin probability distribution. In the above equation 
pi is the spin flip operator, pi f (u i )  = f ( - q ) ,  and the generalized Glauber [7] transition 
rates are 

w. 1 - 2  - q 1 -  a;ui-yJi - a;oiuj;l) 

a,' = &anh(Ki + &+I) f tanh(Ki - Ki+1)1. 

(21) 

where 

(22) 

The average value of each spin is the solution of 
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where the average () is taken with respect to P((cT), t ) .  Using (22) and the Fibonacci 
ordering, the set of equations (23) for the Laplace component q~(l/r)e-llc of the average 
local magnetization is reduced to the following three subsets of equations, 

a1 z tanh(2L) a2 = a5 i(tanh(L + S) + tanh(l- S)) 

a3 = a4 i(tanh(L+ S) - tanh(L - S)). (25) 

The set of equations (24) is a set of linear equations of the form (2). A simple RG 
transformation (9) corresponds to the anti-inflation rule LS + L ,  L + S which corresponds 
to a decimation of the B sites only. The number of remaining sites is 5-l times the original 
number and are relabelled according to the following weight function 

n.m,e 

The additional index in brackets for the y sites denotes the type of neighbouring spin to 
the right. This relabelling allows the new equations to be written in the same form as (U) 
with renormalized parameters. 

The renormalization of the parameters is the following [14] 

E ; = E y - a J 3 - a $ z  E j = E , - a J ' 3  E : = E , - a l r z  

a; = a4rz a; = a4rz a; = as = al a; = alr3 (27) 

where 

a3 
-115 - i t  + Eg 

r3 az rz a1 

-115 -it + E, 
rl = 

-115 - ie + Eo 
a4 as r4 r5 = 

- l / r  - ic + E, -l/t - i t +  E,' 

The recursion relations for these dimensionless parameters are 

Under the decimation transformation, the [ai] -+ 0, and we can obtain the Gjj (o fa  
particular site j )  [12] from 
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However, the sites that remain after many iterations are only a small subset of the 
original sites. Because the lattice is not translationally invariant, these sites alone cannot 
be used to obtain the total distribution of relaxation times (3). The imaginary parts of these 
Gjj will give information about the nature of the distribution including the singularities and 
the locations of gaps. However, there is no guarantee that all modes will be present in 
these response functions. In systems without translational invariance, all of the Gji should 
be calculated to obtain the total distribution [201. Ashraff and Stinchcombe [19] used these 
three local Gjj to study the related problem of electrons and phonons on quasi-periodic 
chains. The local response functions were weighted as follows 

Since all of the sites in each subgroup (a, ,9, y )  are not equivalent, this represents an 
approximation to the total distribution. For this reason, we must use the generating function 
approach described in section 2. 

Equations (24) can be expressed entirely in terms of the ri  by making the coefficient 
of q X  on the left-hand side equal to unity. Similarly, in the expression for S(') we take the 
coefficient of qi? to be equal to -; at each step of the transformation. This ensures that 
S(O) always has the same functional form and identifies an initid constant C(O) as 

C(') = -4 In[dn*d"6dn' a 5 Y l  (32) 

where dx = l /r + ic - Eh'). The summation in (15) is extended to include this initid 
term which represents the distribution for non-interacting spins. At subsequent steps C(") 
is given by 

The RG iteration procedure (27F(29) and expression (15) provide an efficient numerical 
procedure for calculating p. The resulting distribution.of relaxation  times is plotted in 
figure 2 for L = 1.0 and S = 0.75. There are three main self-similar bands separated by 
large gaps. In this respect, the spectrum is similar to that of the periodic chain shown in 
figure I@). However, for the quasi-periodic chain, this splitting of the spectrum occurs 
repeatedly within each of these main bands. At T = 0, this model has metastable states 
which correspond to the spins separated by the weaker of the two bonds all pointing in the 
same, but arbitrary, direction. At low temperatures, these three. main bands become very 
narrow with the lowest band describing the metastable states. Figure 3(a) shows a In-!n 
plot of the distribution for the same ratio of S to L as in figure 2. but with L = 5.0. The 
behaviour is in accord with (16) and the slope yields ids - 1 = -4 which corresponds 
to z = 2. The only significant Fourier component of the function Q as l/r + 0 is the 
constant term. The smcture at larger values of l /r is due to the singularities at the gap 
edges and the scaling behaviour occurs about finite values of l/r. 

Below we will show explicity that the non-universal amplitude A ( T )  in (16) is given by 
A ( T )  = e2(L-s). In figure 3(b) we illustrate this by plotting In Ap against l n l /Ar  where 
A = . A ( f i ) / A ( f i ) .  The temperature is the same as in figure 3(a) and fi = 0.5z. Since 
the two plots in figures 3(a) and (b) coincide, this confirms the assertion in~section 2 that 
the amplitude in (16) is non-universal and that it introduces a new bare time scale for the 
inverse relaxation time l/r. However the critical exponent z remains universal. 

Ashraff and Stinchcombe [14] have studied the RG transformation (29) in detail 
and concluded that z was non-universal.  the^ transformation has a critical fixed point 
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Figure 2. The dishibution of inverse rehation times 
of the quasi-pel'@ic Glauber-lsing chain for L = 1.0, 
'S = 0.75 and f = IO-'. There are three main bands 
with an internal self-similar "re. 

\ 

Figure 3. (a) A b l a  plot of the dishibution of rehation times of the q+-periodic Glauber- 
king chain. The slope indicates a (l/r)-'12 divergence of p .  (b) The same plot at a lower 
temperature than in (U) with fi = 0.5T1. Both p and r have been scaled by A = A(Tl)/A(Tz). 

r* = (i, <-', < - I 9  <-I ,  c-') which describes the behaviour of the system near Ifs = 0. 
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The leading eigenvalue of the linear RG transformation is <*, and this yields the universal 
value z = 2 as in the case of all d = 1 king models. Therefore, according to (16) p 
diverges as‘p - (l/rj-’/*. This universal behaviour is confirmed in figure 3(a). The 
metastable states in this model introduce a new ‘bare’ time scale which should be separated 
from the effects of the long-range fluctuations. At low temperatures and near l / r  = 0, 
the initial value of I’“ - [$, 1 - 8,8,8, 1 - 8) where 8 = e-2(L-fl << 1 (we assume 
L > S). At the 6rst iteration, rz and r3 interchange their values but rI stays fixed at 4 
while the relationships rz = rs, r3 = r4 are maintained. At the second iteration, all of the 
ri are in the vicinity of the fixed point. In this region the flow can be described as a run 
away from the fixed point with the temperature-independent scale factor f2. The first two 
iterations result in both ar(1)/L31’(0) and aro)/aI’(Ol being propo&onal to l/8. According 
to the discussion in section 2, the amplitude A(T)  is proportional to e*(L-*. The width of 
the band is inversely proportional to this initial scale factor, and thus has a non-universal 
temperaturedependent value. 

Two initial iterations are required to scale all the parameters to the linear regime which 
is due to an interchange of the two bonds when the sites are relabelled at each step. Similar 
behaviour is also present in the static problem [13]. It is imporkint that only two iterations 
are needed for the I? to reach the linear region. This fact clearly separates A. from the 
repulsive eigenvalue of the fixed point. Ashraff and Stinchcombe [I41 did not separate 
these factors and hence they concluded that z was non-universal. 

The re,dar amplitude & ( x )  in (16) may be expected to have an oscillatory behaviour 
with a period z In < - 0.96. The appearance of a constant Q ( x )  as l/r + 0 (figure 3) is 
probably due to the fact that at low temperatures the configurations with the largest r are 
those in which the spins between the weak bonds are frozen into a parillel alignment. Hence 
the dynamics of the chain is essentially equivalent to a uniform-bond king chain whewonly 
the weaker bond provides the coupling between block% of spins with a new ‘bare’ flipping 
rate. Since the uniform chain can be rescaled by any scaling factor, oscillations in the 
amplitude would not appear [4]. 

A Figure 4. The hi&gular generator of the 3simplex 
lanice and the fractal after two iterations. The sites 
within each elementary triangle (a) are labelled by 
1.2.3. , 

4. The kinetic king model on a 3-simplex lattice 

The 3-simplex lattice is a fractal (dr = In 3/ In 2)  with the triangular generator as shown 
in figure 4. The spins [up = +l} are located at the nodes of the 3-simplex lattice. The 
index 01 denotes the ‘cell’ (elementary hiangle) and i = (1,2,3} denotes the comers of that 
triangle. The spins interact-according to the Hamiltonian (18) with equal bonds, Ki = K ,  
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and the dynamics of the model is described by the generalized Glauber dynamics which 
obeys the master equation (20) with the transition rate 

(34) 

B W Southern md Y Achiam 

W,P = f ( 1 -  U , P [ U ( U ~ ~  +U& +U!) + ~ U ~ , U ~ + ~ U ~ ] )  

U = $(tanh3K +tanhK) b = a(tanh3K - 3tanhK). (35) 

where 

The nearest-neighbour spins U,? and qp are located in two different cells and the index i of 
U: is defined modulus 3. 

Since the coordination number of the system is 3, the kinetic equations (23) for the 
average local magnetization include the non-linear term (u&ui",u~). To approximate this 
term we focus on the metastable states that control the slowing down near T = 0. In the 
3-simplex geometry the metastable states are formed by the configurations with the three 
spins in each cell pointing in the same direction [E, 211. Therefore at low temperatures we 
have uz,u&u! r.x U!. Using this relation, the non-linear term is replaced by (U!) and the 
kinetic equations for the spins in the 01 triangle become 

(-l/r+E)qP = a l ( q ; + q ; ) + w :  (- l /r+E)q;  = a l ( q ? + q ~ ) + w i  

( - U T  + E)q; = al(q; + qf)  + w! (36) 

where al = a,uz = a + b and E = 1. Note that uz + 0 as T + 0 and the triangles 
completely decouple. 

The exponent S(O) in the generating function can be divided into intra- and inter-cell 
terms as follows 

where now rf") = a l / ( l  - l /r  - ie) and rf) = uz/(l - I/r -it-). As in the previous 
section, we define the I? at each stage by requiring the coefficient of q," to be -4. This 
defines an initial term in the expression (15) for p given by C(O) = -; In(l/r + it- - 1) 
which represents the non-interacting contribution. 

One possible RG approach to calculate p is to use a decimation or dedecoration 
transformation [16], where the spins on the smallest triangles are eliminated. However, 
for this lattice the decimation approach does not have a fixed point and the separation of 
non-universal amplitudes is difficult. This difficulty also occurs for other types of problem 
on both this lanice and the linear chain [17]. For this reason we will use a block spin, 
or decoration, transformation which corresponds to introducing a new, spin variable q. for 
each of the elementary triangles. 'he weight function has the form T = n,": Tu where 

All of the original sites on the lattice can be eliminated exactly leaving a lattice of block 
spins with the same structure as the original lattice corresponding to a scale factor b = 2. 
At the kst iteration rl and r2 become equal 
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Further transformations can be described by the one-parameter map 

The critical fixed point of (40) is I'* = ( f ,  $} and the linearized RG has a repulsive 
eigenvalue h = 5. Using (12) the critical dynamic exponent is found to have the value 
z = ln5/ ln2. The distlibution of relaxation times is calculated using (15) and the following 
expressions for C(") 

2 
c(1) = - 1 12 1n[(1 +rf) -rf))(i +r{O)+rf))] - 2 ln(l -ry) -2ry) -rf)') 

c(n) = -hln(l+ 217'")) - 2 In(1- r ( n )  - 3 ~ ' )  (41) 

and is ploaed in figure 5 for K = 1.0. In the limit of low temperatures, the two 'bands' 
shrink in width with the lower band describing the slowly relaxing metastable states. As 
I / s  + 0 the distribution of relaxation times diverges as in (16) with ds = 21n3/ln5. This 
same value of 4 is the spectral dimension for electronic and  scala^ vibrational problems on 
the 3-simplex or Sierpinski gasket lattices [lo, 11,17,22]. 

P W . ,  

1 
I /i 

w 1 
Fignre 5. The distribution of inverse relaxation t imes 
of the 3-simplex Glauber-king model for K = 1.0 and 
E = IO". ?bere are two main 'bands' which are self- 
SimilX. 

Figure 6. A In-h plot of the distribution of relaxation 
times of the 3-simplex lattice at a lower temperame 
than in figure 5 and corresponding to K = 2.0. The 
slope agrees with the value (ln3/ln5 - 1) obtained 
from the fixed point. The function 42 has many Fourier 
mmponenb with period h5. 
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The non-universal amplitude A(T) is obtained in the same way as it was for the quasi- 
periodic chain. The initial values of the r are [(I - @/2, @} where @ = e-2K, In the 
first step of the RG transfomation~ I? moves into the vicinity of the unstable fixed point 
(4, f]. The partial derivative ho discussed in section 2 is proportional to e-' and hence 
diverges as T + 0. Figure 6 shows a In-In plot of the distribution at a lower temperature 
corresponding to K = 2.0. The oscillations occur about a slope which agrees with the value 
of id, - 1 obtained from the fixed point and is universal. The function 8 is periodic with 
period z l n b  = ln5 and has many Fourier components. The period is also universal but 
depends explicitly on the fact that the geometry is only self-similar under scaling by b = 2. 

5. Conclusion 

We have found that the distribution of inverse relaxation times is a useful tool for studying 
critical dynamics in systems which are not translationally invariant. The distribution can be 
obtained numerically from a generating function'using RG methods and the behaviour of the 
distribution as l/r -+ 0 yields the dynamic critical exponent z.  If the system has metastable 
states then the critical amplitude contains a non-universal contribution which must be 
extracted since it defines a new 'bare' time scale for the dynamics at low temperatures. 
The dynamic exponent and the divergence of the distribution of relaxation times are related 
to the spectral dimension of the system which also characterizes the density of states of a 
variety of other problems. These include models for electrons, scalar elasticity and electrical 
conduction on the quasi-periodic chain [19,22-24] and Sierpinski gasket 122, ,lo, 11,251. 

An important feature in the models that we studied is that the width of the lowest band 
tends to zero as the temperature approaches zero. This narrowing of the band gives an 
additional contribution to the critical slowing down since a new time scale is introduced. In 
conventional numerical simulations of the scaling properties of these models it will be hard 
to distinguish between the two mechanisms that affect the relaxation towards equilibrium. 
If they are not properly separated, the numerical experiments would find a non-universal 
value of z [26,27]. 

We have.related three separate features of the distribution of relaxation times, to the 
behaviour of the RG transformation. The universal exponent, z, is related to the leading 
eigenvalue of the critical fixed point of the transformation. The oscillations of the amplitude 
have a period that is related to z and to the geometrical properties of the lattice. Finally, 
the diverging bare time scale can be obtained from the transients of the non-linear RG 
transformation. This identification provides a possible solution to the problems encountered 
by Kutasov et al [27] in their study of a model with hierachical couplings. 

The results for the critical slowing down obtained in this study are different from the 
model proposed by Henley [SI for critical percolation clusters. In our case, the non-universal 
'bare' time scale does not depend on the system size. This behaviour is due to the fact that 
the metastable states in these systems are compact groups of spins separated by the weak 
bonds. In the case of the fractal lattices considered by Kutasov er al 1261, we have not 
been able to identify similar compact groups of spins. For these lattices, it is possible that 
the non-universal factor ho contributes at all steps of the RG transformation and this would 
indeed be consistent with the model proposed by Henley. 
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